
Discrete Representations in Working Memory: A Hypothesis and Computational Investigations

Randall C. O’Reilly Michael Mozer Yuko Munakata Akira Miyake
Department of Psychology Computer Science Department Department of Psychology Department of Psychology

University of Colorado University of Colorado University of Denver University of Colorado
oreilly@psych.colorado.edu mozer@cs.colorado.edu munakata@kore.psy.du.edu miyake@psych.colorado.edu

We present a novel hypothesis concerning the nature
and development of working memory representations
and some initial computational investigations of this hy-
pothesis. Working memory refers to the active mainte-
nance of information in the service of complex cognition,
such as language comprehension, spatial thinking, and
problem solving (Miyake & Shah, 1999). We propose
that the unique demands placed on the working memory
system shape its representations over learning and devel-
opment, affecting the use of working memory by the cog-
nitive system as a whole. Our primary source of insight
into this process comes from a computational analysis,
which is used to integrate and explore relevant findings
from neurobiology as well as developmental and adult
cognition.

Our specific hypothesis is that to maintain informa-
tion in an active state over delays and in the face of inter-
ference (e.g., from incoming stimuli, ongoing process-
ing, and noise), working memory representations should
be discrete in nature. A discrete representation admits to
only a finite set of possible states, rather than represent-
ing continuous states. For example, the integers from 1
to 100 form a discrete set, in contrast to the real num-
bers in this range. Discreteness imparts a measure of ro-
bustness to the representation because small amounts of
noise can be overcome by interpreting an observed state
as the nearest discrete state (Figure 1). Many different
processing mechanisms could achieve this remapping of
perturbed states, including attractor dynamics in neural
networks (Hopfield, 1984; Smolensky, 1986), nearest-
neighbor classifiers (Cover & Hart, 1967), winner-take-
all networks, and rule-based systems.

We suggest that because information must be actively
maintained over relatively long time periods in work-
ing memory to complete complex cognitive tasks (e.g.,
10s of seconds to minutes), it is in a unique position to
benefit from discreteness. This discreteness comes at a
cost, however, because it limits the level of fine detail or
graded information that can be encoded. Thus, the repre-
sentations underlying other cognitive functions may uti-
lize less discrete, graded representations because they do
not require as much noise tolerance and can therefore en-
code finer detail and more graded information.

From the central property of discreteness, a number
of other properties follow. For example, discrete rep-
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Figure 1: (a) Two-dimensional activity space with discrete
representations where only a subset of states are meaningful,
indicated by the small squares. The “X” denotes a corrupted
version of one of the discrete states. (b) Discrete representa-
tions allow the space to be carved up into equivalence classes,
and corrupted states (e.g., X) treated as equivalent withinthe
boundaries of the discrete state.

resentations should be: more categorical, more easily
verbalizable and generally accessible to other parts of
the cognitive system, better for perceiving or perform-
ing a sequence of steps, and more “symbolic” in some
respects. All these properties have generally been at-
tributed to working memory representations as well, and
an important component of our research is to explore the
idea that they all follow from the more basic property of
discreteness.

Existing Behavioral Data

A number of findings in the behavioral literature are
consistent with the implications of our discreteness hy-
pothesis, including:� Continuous spatial location information is encoded in

a categorical fashion in tasks where participants are
asked to encode the location of a dot within a large cir-
cle (Huttenlocher, Hedges, & Duncan, 1991). Partici-
pants exhibit a systematic bias, shifting the dot closer
to the center of the nearest quadrant of the circle. Our
interpretation is that the categorical bias reflects the
involvement of working memory. This interpretation
is consistent with their finding that this bias effect in-
creases in magnitude when a delay of 10 seconds is
imposed between stimulus presentation and response
selection, thereby necessitating working memory in-
volvement.� Categorization becomes more dimensionally focused



Figure 2:Ambiguous duck/rabbit figure.

and sensitive to exact identity matching with both
increasing developmental age (Smith, 1989) and
increasing amounts of processing time (Lamberts,
1995). In young toddlers and under speeded re-
sponse conditions, categorization tends to be based
on overall similarity regardless of differential simi-
larities along different dimensions. However, older
children and adults given sufficient processing time
will place stronger weight on stimuli sharing the same
value along a given dimension even when these stim-
uli are less similar along other dimensions (e.g., two
red stimuli that are very different in size will be cate-
gorized together instead of an orange and a red stimu-
lus of similar but not identical sizes). Thus, it appears
that, under conditions when working memory is po-
tentially engaged, categorization becomes much more
discrete in both its dimensional focus and sensitivity
to identity.� Interpretation of ambiguous figures becomes more un-
ambiguous (discrete) when they are held in work-
ing memory instead of being perceptually available.
Chambers and Reisberg (1985) showed that partici-
pants were able to generate different interpretations of
ambiguous figures (e.g., Figure 2) on direct viewing,
but could typically generate only one interpretation
when the figure was held in working memory. The in-
ability to generate an alternative interpretation was not
due to a lack of maintained detail in working memory,
because participants could draw the figure from mem-
ory. Rather, we suggest the inability was due to the
strong selection of one discrete interpretation in work-
ing memory.� In tasks that require a comparison of alternatives
that vary in fine-grained distinctions, such as faces
or wines, verbalization impairs performance (e.g.,
Melcher & Schooler, 1996; Schooler & Engstler-
Schooler, 1990). We suggest that requiring subjects to
use discrete verbal representations for encoding will
engage the use of the working memory to maintain
the properties of one item while comparing it with an-
other, instead of relying on more graded familiarity-
like mechanisms that could be mediated directly by
perceptual representations. Thus, we interpret these
results as suggestive evidence that discrete working
memory encoding has a deleterious effect on the abil-
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Figure 3: Illustration of
an attractor state and its
surrounding basin. Net-
work updating causes the
activation state (simplified
by 2 variables, x & y) to
converge on the attractor
(by descending in energy)
from anywhere within its
surrounding basin.

ity to make fine-grained distinctions among stimuli.

Computational Models
We have developed a series of computational models

to explore working memory (including previous work by
Munakata, McClelland, Johnson, & Siegler, 1997; Mu-
nakata, 1998). One line of research uses an abstract
framework developed by Mozer (1998; Mathis & Mozer,
1996), and has demonstrated that discrete representations
are more robust to noise, are more easily processed by
other processing pathways, and are more influential over
these other pathways. Further, we were able to char-
acterize the circumstances under which discrete repre-
sentations are likely to be important, as contrasted with
other situations when they are less likely to be important.
These results provide theoretical leverage in understand-
ing what distinguishes working memory tasks from other
tasks where working memory is not necessary.

Recently, we have used a more biologically-based
framework (O’Reilly, 1998; O’Reilly, Braver, & Co-
hen, 1999) to explore some of the ways in which dis-
crete representations can be manifested in biological sys-
tems such as the prefrontal cortex (PFC). These mod-
els take advantage of theattractors that form among
recurrently-interconnected units to refresh and maintain
active memories over time (Braver, Cohen, & Servan-
Schreiber, 1995; Dehaene & Changeux, 1989; Zipser,
Kehoe, Littlewort, & Fuster, 1993). Attractors (Figure 3)
are so-named because they are states of activation that
the network is drawn towards as activations are updated
over time (settling). Attractors can maintain information
by keeping the network stable in the attractor state over
time.

The first series of three simulations reported here ex-
plore how different levels of discreteness can be mani-
fested in terms of different patterns of interconnectivity
among a set of neural units. These connectivity patterns
result in different widths of the attractorbasins (regions
of activation space surrounding the attractor, from which
the network will reliably settle into the attractor state, see
Figure 3), and therefore the level of discreteness of the
representational space. These attractor basins produce
the equivalence classes shown in Figure 1.
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Figure 4: Distributed featural
representations used for explor-
ing active maintenance. Three
objects (synthesizer, television,
and terminal) can be rep-
resented using combinations
of three features (keyboard,
speaker, monitor).
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Figure 5: a) Network for simulation 1, with input providing
activation to PFC (prefrontal cortex) units representing features
as shown in previous figure. The feature units are all intercon-
nected with each other to support the maintenance of activation.
b) Activation spreads across the interconnections once the in-
put is removed, as is shown by the PFC activation states plotted
over time (lighter = more active).

The final simulation explores the use of a dopamine-
based dynamic gating mechanism that is thought to ac-
tively regulate the strength of a subset of neuronal con-
nections in the PFC (Cohen, Braver, & O’Reilly, 1996;
Braver & Cohen, 1999). This gating mechanism imposes
discreteness in the switching between maintenance and
updating of working memory representations and is thus
likely to contribute to the overall discreteness of working
memory representations.

Simulation 1: Spreading Activation in Continuous
Distributed Representations

In this first simulation, we show that a working mem-
ory network with only pairwise (lateral) excitatory in-
terconnections among distributed units (with global sur-
round inhibition) exhibits virtually no ability to maintain
information over time after the input is removed. There-
fore, an alternative architecture is required, as discussed
in Simulation 2. The simulation uses distributed repre-
sentations as shown in Figure 4, and its goal is simply
to maintain the representation of an object (e.g., “televi-
sion” as encoded by the activity of the distributed fea-
tures of “monitor” and “speakers”) after the input pattern
for that object is removed. The network is shown in Fig-
ure 5a. Although the PFC working memory units can
encode a specific object using a distributed feature-based
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Figure 6: Network
with higher-order rep-
resentations encoding
objects individually. This
produces more discrete
representations with
wider attractor basins, and
correspondingly better
active maintenance.

code while external inputs are present (e.g., when such an
object is within view; shown in the top part of Figure 5b),
once maintenance of this information is required without
external input, the activation spreads across the intercon-
nected distributed feature units and the object-specific
encoding is lost (bottom part of Figure 5b). Thus, the
network can no longer distinguish “television” from “ter-
minal” or “synthesizer” based on the maintained infor-
mation.

This result suggests that although overlapping, inter-
connected distributed representations can be very useful
for perceptual processing (while inputs are present), they
are not suitable for the active maintenance of informa-
tion over time. These distributed representations pro-
duce a kind of representational continuum defined over
the different combinations of unit activations within the
space, and because all such combinations are supported
by the distributed interconnections, the network is un-
able to lock onto and maintain only one of them. Thus,
this example constitutes an extreme version of continu-
ous (non-discrete) representations where active mainte-
nance fails even in the absence of noise.

Simulation 2: Wider, More Discrete, Attractor Basins

Next, we explore the effects of adding higher-order
representations that encode the specific objects to be
maintained (e.g., “television”). These representations
amount to a second layer of units that connect to spe-
cific subsets of units in the first layer (Figure 6). With
these representations, the network is able to maintain in-
formation over time, even with small amounts of noise,
because there is a discrete attractor state corresponding to
each object to be maintained. However, when the noise
level is increased, the information is rapidly corrupted,
because the distributed overlap in the feature layer makes
the attractor basins relatively narrow. The level of noise
robustness in the model can be predicted as a function
of the distinctiveness of the working memory represen-
tations (i.e., the extent to which units are shared across
multiple different representations). This suggests the
idea explored in the next simulation.
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Figure 7: Network
with completely isolated
representations encoding
features individually. This
produces discrete repre-
sentations with wide and
robust attractor basins,
and correspondingly
better active maintenance.

Simulation 3: Isolated Representations

This simulation explores the most robust configura-
tion of the network, which is when the units are com-
pletely isolated from each other, and activation is main-
tained through excitatory self-connections (Figure 7).
The complete isolation of the feature units from each
other prevents any spread of activation between them,
producing the robustness of active maintenance. When
units are individually self-connected like this, their
graded activations are transformed into discrete, binary
activation states. Specifically, if the unit is active above
a threshold (determined by a number of factors includ-
ing strength of the self connection), then it activates itself
strongly enough to maintain its activation over time, even
in the absence of bottom-up input. This self-activation
converges on a specific activation value, producing the
“on” case of the two binary states. If the unit’s activation
is below the threshold, activation will dissipate when the
input is removed, producing the “off” binary state. Thus,
the width of the attractor basins in this network are en-
hanced by the discrete, binary character of the isolated
units, which is consistent with our overall hypothesis that
working memory benefits from the use of such discrete
representations.

Interestingly, there is evidence that the PFC may
have more isolated patterns of connectivity — neurons
there appear to be interconnected within self-contained
“stripe” patterns (Levitt, Lewis, Yoshioka, & Lund,
1993). Recent electrophysiological evidence further sup-
ports this notion, suggesting that the PFC is composed of
small groups (“microcolumns”) of iso-coding neurons,
which are presumably tightly interconnected with each
other (Rao, Williams, & Goldman-Rakic, 1999).

Simulation 4: Dynamic Gating for Rapid Updating
and Robust Maintenance

Even with the most robust isolated connectivity pat-
terns, there remains the following fundamental problem:
fixed levels of excitatory input weights into the simulated
PFC working memory system cannot simultaneously al-
low information to be rapidly encoded while also pro-

Trial Input Maint Output
1 STORE-A A A
2 IGNORE-B A B
3 IGNORE-C A C
4 IGNORE-D A D
5 RECALL A A

Table 1:A sequence of trials in the simple active maintenance
task, showing the input (control cue and stimulus), what should
be maintained in active memory, and what should be output.
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Figure 8: Dynamic updating and maintenance model. Input
contains task control units (S=store, I=ignore, R=recall)and
stimulus units (A-D). The output contains the stimulus units.
The hidden (posterior cortex) and PFC have simple one-to-one
representations of the input stimuli. The AC unit and the output
hidden layer learn the significance of the cues for task perfor-
mance, and how to produce the appropriate outputs.

tecting maintained information from the interfering ef-
fects of other inputs that should not be maintained. Rapid
encoding requires relatively strong input weights, while
protected maintenance requires weak ones. Thus, we
suggest that a successful working memory system re-
quires dynamic modulation of these input weights, and
it appears that the dopamine neuromodulation of PFC
could accomplish this (e.g., Williams & Goldman-Rakic,
1993). Furthermore, manipulations of frontal dopamine
have been shown to affect working memory performance
(e.g., Kimberg, D’Esposito, & Farah, 1997).

We have argued that the control of working mem-
ory updating via dopamine is synergistic with the role of
dopamine in reinforcement-based learning (Cohen et al.,
1996; O’Reilly et al., 1999). This learning mechanism
provides a means of adaptively controlling the working
memory system, which is essential to avoid the need for
some kind of homunculus-like controlling mechanism.
The simulation described here shows how this learning
mechanism can learn to discretely update working mem-
ory based on a set of control signals that it initially knows
nothing about.



The task we used to test the active maintenance
mechanism involves storing a stimulus item in active
memory in the face of a variable number of interven-
ing distractor items, and then recalling the stored item.
The network is provided with inputs that explicitly mark
when a stimulus should be stored, ignored, or recalled
(Table 1), but it does not initially know the meaning of
these signals. The network (Figure 8) learns by trial-and-
error — noise in the dopamine gating system enables it to
store information randomly, and when it stores the stim-
ulus identity on the store trial, it can produce the cor-
rect answer on the recall trial. This correct performance
results in a reward signal, and the learning mechanism
learns to associate this reward with the stimuli main-
tained in active memory. Because the store signal is one
of the maintained stimuli, it becomes associated with re-
ward, and thus it will tend to activate a prediction of fu-
ture reward on subsequent trials. This reward-prediction
activation, which is thought to correspond to a burst of
dopamine, triggers the updating of working memory, and
thus the storage of the stimulus information.

In summary, this simulation demonstrates the effi-
cacy of the learned dynamic control mechanism. Be-
cause this mechanism works by discretely switching
working memory between updating and maintenance, it
is consistent with our overall hypothesis that working
memory employs discrete representations. We plan to
explore the implications of this discrete control mecha-
nism for the development of working memory represen-
tations in future research.

Conclusion
Working memory plays a central role in most ac-

counts of complex cognitive function, because working
memory is required in any task that involves multiple
steps or a temporally extended focus of attention. It
is essential to understand the nature of the representa-
tions in this system and to understand how people learn
to use working memory in the service of complex cog-
nition. Our computational investigations help advance
our knowledge in this important area by exploring the
consequences of various biologically-motivated factors
(connectivity patterns, dopamine-modulated control) on
the discreteness of working memory representations, and
the resulting effectiveness of the working memory sys-
tem for maintaining information in an active state over
time.
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